400-8910-119
首页 > 专家风采 > 专家详情
专家图片
陈坚 教授

东南大学

材料科学与工程学院金属材料系

个人履历

陈坚,教授,1996至2003年在西安交通大学攻读材料科学与工程专业本科和硕士学位,2003年获英国EPSRC全额资助前往英国伯明翰大学攻读博士学位,2008年毕业后留校开展博士后研究(Research fellow),2011年入职东南大学材料科学与工程学院副教授,2016年破格教授,现任材料学院工会主席和金属材料系副主任。

研究内容涉及高性能锂/钠离子电池与锂金属电池设计与开发,微纳米力学实验与理论,以及等离子体表面改性与薄膜技术开发与应用;主持国家自然基金项目2项,江苏省自然基金面上项目1项等,作为主要参与人参加江苏省“双创团队”,英国EPSRC和欧盟第七研发框架计划项目等,入选江苏省“六大高峰”人才和江苏省“双创博士”;在Energy Storage Materials, Journal of Materials Chemistry, Carbon等学术期刊发表研究论文90余篇,受邀撰写英文合著2章,中文合著1章;担任Surface Engineering期刊编委,中国《表面工程》期刊编委等学术兼职。

本研究小组包括博士后(外籍)、博士和硕士研究生15余人,欢迎有志于先进材料研究与开发的同学加盟,有相关研究经验及材料计算模拟基础的同学将优先考虑。

电话:025-52090688

邮箱:j.chen@seu.edu.cn

研究方向

①高性能锂/钠离子电池与锂金属电池设计与开发;

②微纳米力学实验与理论;

③等离子体表面改性与薄膜技术开发与应用;

研究成果

研究方向及主要成果

1、高性能锂/钠离子电池与锂金属电池设计与开发;

在锂/钠离子电池方面,重点研究了多种高性能负极材料的设计与开发,包括嵌入机制的钛酸锂和二氧化钛、新型二维材料石墨烯和MXene、转化机制的过渡金属氧化物,合金机制的二氧化锡和硅。从缺陷调控、结构杂化与多级设计等方面,对材料的形貌、结构、组分和缺陷进行调控和优化,构建出一系列高性能的负极材料。近期针对锂金属电池负极也开展了广泛的研究。

  

主要相关论文

[1] Xu H., Liu Y., Qiang T., Qin L., Chen J*., Zhang P., Zhang Y., Zhang W., Tian W., Sun Z.*, Boosting Sodium Storage Properties of Titanium Dioxide by a Multiscale Design Based On MOF-derived Strategy. Energy Storage Materials, 2019, 17: 126-135. (2019即时因子15.9)

—— 钠离子电池负极TiO2的多尺度设计

 “能源学人”微信号公众号介绍:https://mp.weixin.qq.com/s/Z-4rEJH8_DnpbarmUYEv8A

[2] Wang D., Zhang Y., Chen J.*, Xu H., Liguang Q., Li Y., Zhang W., Zhang P., Tian W., Guo X., Sun Z., Structural hybridization of ternary (0D, 1D and 2D) composites as anodes for high-performance Li-ion batteries. Energy Storage Materials, 2018, 13: 293-302. (2019即时因子15.9)

—— 锂离子电池负极过渡族金属氧化物的多维度杂化设计

[3] Xu H., Qin L., Chen J.*,Wang Z., Zhang W., Zhang P., Tian W., Zhang Y., Guo X., Sun Z.*, Toward advanced sodium-ion batteries: a wheel-inspired yolk-shell design for large-volume-change anode materials. Journal of Materials Chemistry A, 2018, 6: 13153-13163. (IF 9.9)

—— 多触点接触SnO2核壳结构钠离子电池负极设计

“能源学人”微信号公众号介绍:https://mp.weixin.qq.com/s/bC23U26KTLQuhYkoJ0kIyg

[4].Zheng W., Zhang P., Chen J.*, Tian W.B., Zhang Y.M., Sun Z.M.*, In-situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. Journal of Materials Chemistry A, 2018, 6: 3543-3551. (IF 9.9)

—— 锂离子电池负极MXene复合材料的微波快速制备

[5] Qin L., Xu H., Wang D., Zhu J., Chen J., Zhang W., Zhang P., Zhang Y., Tian W., Sun Z.*, Fabrication of Lithiophilic Copper Foam with Interfacial Modulation toward High-Rate Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10(33): 27764-27770. (IF8.1)

—— 高倍率锂金属负极Li/Cu复合材料界面调控

[6].Xu H., Chen J.*, Wang D., Sun Z., Zhang P., Zhang Y., Guo X., Hierarchically porous carbon-coated SnO2@graphene foams as anodes for lithium ion storage. Carbon, 2017, 124: 565-575. (IF7.1)

—— 锂离子电池负极多级孔结构SnO2@graphene复合材料的设计与开发

[7]. Zhuang X., Zhang Y.*, He L., Zhu Y., Tian Q., Guo X., Chen J.*, Li L., Wang Q., Song G., Yan X., Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries. Electrochimica Acta, 2017, 249: 166-172.(IF5.1)

—— 高性能锂离子电池硅负极的设计与制备

[8]. Elsiddig Z.A., Xu H., Wang D., Zhang W.*, Guo X., Zhang Y., Sun Z., Chen J.*, Modulating Mn4+ Ions and Oxygen Vacancies in Nonstoichiometric LaMnO3 Perovskite by a Facile Sol-Gel Method as High-Performance Supercapacitor Electrodes. Electrochimica Acta, 2017, 253: 422-429. (IF5.1)

—— 非化学计量比设计钙钛矿结构LaMnO3高性能超级电容器电极材料

[13]. Xu H., Chen J.*, Li Y., Guo X., Shen Y., Wang D., Zhang Y., Wang Z., Fabrication of Li4Ti5O12-TiO2 Nanosheets with Structural Defects as High-Rate and Long-Life Anodes for Lithium-Ion Batteries. Scientific Reports, 2017, 7(2960). (IF4.1)

—— 高性能锂离子电池负极Li4Ti5O12的缺陷设计与开发

[14]. Liu Y., Zhao M., Xu H., Chen J.*, Fabrication of continuous conductive network for Li4Ti5O12 anode by Cu-doping and graphene wrapping to boost lithium storage. Journal of Alloys and Compounds, 2019, 780: 1-7.(IF3.8)

—— 高性能锂离子电池负极Li4Ti5O12@Graphene的开发

—— 第一、第二作者均为本科生

[15] Elsiddig Z.A., Wang D., Xu H., Zhang W.*, Zhang T., Zhang P., Tian W., Sun Z., Chen J.*, Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites as high-performance supercapacitor electrodes. Journal of Alloys and Compounds, 2018, 740: 148-155.(IF3.8)

—— 高性能超级电容器电极材料LaMnO3@Graphene的开发

[16] Xu H., Wang D., Zhang W., Zhu J., Zhang T.*, Guo X., Zhang Y., Sun Z., Chen J.*, SnO2 nanorods encapsulated within a 3D interconnected graphene network architecture as high-performance lithium-ion battery anodes. Sustainable Energy & Fuels, 2018, 2(1): 262-270. (2017新刊)

—— 高性能锂离子电池负极SnO2纳米杆@Graphene的开发

[17]. Zhang W.*, Feng P., Chen J.*, Sun Z.*, Zhao B., Electrically conductive hydrogels for flexible energy storage systems. Progress in Polymer Science, 2019, 88: 220-240.(IF24.5)

—— 导电水凝胶研究综述

 

2、微纳米力学实验与理论;

在微纳米力学方面,重点研究非常态纳米力学实验技术,并结合分子动力学模拟与理论分析,研究材料(金属、陶瓷、复合材料、薄膜以及二维材料)在压入形变与失效过程中涉及的种种现象和内在机理。

主要相关论著

[1] Chen J.*, Beake B.D.*, Dong H., Bell G.A.,Environmental nanomechanical testing of polymers and nanocomposites., in Nanomechanical Analysis of High Performance Materials, A. Tiwari, Editor. 2013, Springer: London. p. 63-85.

—— 关于环境可控纳米力学学术专著章节

[2] Chen J.*, Guo X.L., Tang Q., Zhuang C.Y., Liu J.S., Wu S.Q., Beake B.D., Nanomechanical properties of graphene on poly(ethylene terephthalate) substrate. Carbon, 2013, 55: 144-150. (IF7.1)

—— 膜基结构石墨烯/PET力学性能表征与分析

[3] Chen J.*, Gao Y., Liu W., Shi X., Li L., Wang Z., Zhang Y., Guo X., Liu G., Li W., Beake B.D., The influence of dehydration on the interfacial bonding, microstructure and mechanical properties of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon, 2015, 94: 845-855. (IF7.1)

——石墨烯/PVA宏微观力学性能与界面键合和显微组织的关联性

[3] Qin L., Li H., Shi X., Beake B.D., Xiao L., Smith J.F., Sun Z., Chen J.*, Investigation on dynamic hardness and high strain rate indentation size effects in aluminium (110) using nano-impact. Mechanics of Materials, 2019, 133: 55-62.(IF2.7)

—— 纳米冲击动态硬度的实验方法与理论分析

—— 东南大学材料学院首次在国际力学权威期刊Mechanics of Materials上发表学术论文。

[4] Chen J.*, Shi X., Beake B.D., Guo X., Wang Z., Zhang Y., Zhang X., Goodes S.R., An investigation into the dynamic indentation response of metallic materials. Journal of Materials Science, 2016, 51(18): 8310-8322. (IF3.0)

—— 典型金属材料纳米冲击行为分析

[5] Chen J.*, Li H., Beake B.D.*, Load sensitivity in repetitive nano-impact testing of TiN and AlTiN coatings. Surface and Coatings Technology, 2016, 308: 289-297. (IF2.9)

—— 纳米多次冲击统计分析研究

[6] Chen J.*, Ji R., Khan R., Li X., Beake B.D., Dong H., Effects of mechanical properties and layer structure on the cyclic dynamic loading of TiN-based coatings. Surface & Coatings Technology, 2011, 206(2-3): 522-529. (IF2.9)

—— 纳米多次冲击纳米多层薄膜的失效形式与机理

[7] Chen J.*, Beake B.D., Wellman R.G., Nicholls J.R., Dong H., An investigation into the correlation between nano-impact resistance and erosion performance of EB-PVD thermal barrier coatings on thermal ageing. Surface & Coatings Technology, 2012, 206(23): 4992-4998. (IF2.9)

—— 纳米多次冲击纳米多层薄膜的失效形式与机理

[8] Jiao S., Tu W., Zhang P.*, Zhang W., Qin L., Sun Z., Chen J.*, Atomistic insights into the prismatic dislocation loop on Al (100) during nanoindentation investigated by molecular dynamics. Computational Materials Science, 2018, 143: 384-390. (IF2.5)

—— 分子动力学LAMMPS解释Al(100)压入过程中棱柱位错环的产生机制

[9] Jiao S., Huang Q., Tu W., Chen J.*, Sun Z., Investigation on the phase transformation of monocrystalline silicon during nanoindentation at cryogenic temperature by molecular dynamics simulation. Physica B: Condensed Matter, 2019, 555: 139-144.(IF1.5)

—— 分子动力学LAMMPS研究低温条件下Si压入相变现象与机制

[10] Chen J.*, Bell G.A., Dong H.S., Smith J.F., Beake B.D., A study of low temperature mechanical properties and creep behaviour of polypropylene using a new sub-ambient temperature nanoindentation test platform. Journal of Physics D-Applied Physics, 2010, 43: 425404. (IF2.4)

—— 首台商用低温纳米压入装置的研发与应用

[11] Chen J., Beake B.D.*, Bell G.A., Li Y., Gao F., Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures. Journal of Experimental Nanoscience, 2016, 11(9): 695-706. (IF1.4)

—— 低温纳米压入与湿度控制技术与应用

[12] Chen J.*, Bell G.A., Beake B.D., Dong H.S., Low temperature nano-tribological study on a functionally graded tribological coating using nanoscratch tests. Tribology Letters, 2011, 43(3): 351-360. (IF2.2)

—— 低温纳米划擦技术与应用

[13] Chen J.*, Shen Y., Liu W., Beake B.D., Shi X., Wang Z., Zhang Y., Guo X., Effects of loading rate on development of pile-up during indentation creep of polycrystalline copper. Materials Science and Engineering: A, 2016, 656: 216-221.(IF3.4)

—— 高塑性Cu的压入隆起现象的速率敏感性

[14] 汪可华, 陈坚*, 王福德, 梁晓康与孙正明, 材料应力-应变的球形纳米压入法研究进展. 材料导报, 2019, 5 (已接受,待发表)

—— 纳米压入法研究材料应力-应变关系的理论与实验综述

 

3、等离子体表面改性与薄膜技术开发与应用;

在等离子体表面改性与薄膜技术开发与应用方面,重点研究工程材料的减摩、耐磨、防腐的表面保护技术,并为相关企业解决技术难题。近年来面向高性能储能材料也陆续开展了先进等离子体技术的研发工作。

主要相关论著:

[1]J. Chen, Surface Engineered Light Alloys for Sports Equipment, in Surface Engineering of Light Alloys, Aluminium, Magnesium and Titanium Alloys, H. Dong, Editor. 2010, Woodhead Publishing Limited: Cambridge, UK. p. 549-567.

—— 用于体育器械的轻金属材料表面处理技术学术专著章节

[2] Chen J.*, Shi X., Qi S., Mohai M., Bertóti I., Gao Y., Dong H., Reducing and multiple-element doping of graphene oxide using active screen plasma treatments. Carbon, 2015, 95: 338-346. (IF7.1)

—— 氧化石墨烯的等离子体处理技术

[3] Shi X., Beake B.D.*, Liskiewicz T.W., Chen J.*, Sun Z., Failure mechanism and protective role of ultrathin ta-C films on Si (100) during cyclic nano-impact. Surface and Coatings Technology, 2019, 364: 32-42.

—— 高力学性能超薄类金刚石薄膜ta-C的冲击失效

[4] Shi X., Liskiewicz T.W.*, Beake B.D., Chen J.*, Wang C., Tribological performance of graphite-like carbon films with varied thickness. Tribological International, 2019.doi.org/10.1016/j.triboint.2019.01.045 (IF3.2)

——类金刚石薄膜GLC的摩擦学性能

[5] Chen J., Li X.Y., Bell T., Dong H.*, Improving the wear properties of Stellite 21 alloy by plasma surface alloying with carbon and nitrogen. Wear, 2008, 264(3-4): 157-165.(IF3.0)

——CoCr合金的表面改性技术

[6] Chen J.*, Li X.Y., Ji R., Khan R., Fuentes G., Nanomechanical properties of duplex treated 42CrMo4 steel. Surface Engineering, 2013, 29(6): 462-467.(IF2.0)

——离子氮化与CrN复合表面处理技术

[7] Song B., Li Y., Wang K., Cong Z., Gao B., Song Z.*, Chen J.*, Nano-mechanical properties of TaNbHfZr metallic glass films. Surface Engineering, 2019: 1-8.(IF2.0)

——高熵BCC成分薄膜的制备与开发

[8] Yang Z., Zhang K., Qiu N., Zhang H., Wang Y.*, Chen J.*, Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films. Chinese Physics B, 2019, 28(4): 46201.(IF1.3)

——高熵成分氧化物薄膜


热门排行
1
采用电纺丝法制备了前驱体纳米纤维膜,固化的纳米纤维均匀分布。在随后的热解过程中,PVP被碳化成相互连接的3D碳骨架,纳米纤维形态得到了很好的保存。

分享