400-8910-119
首页 > 专家风采 > 专家详情
专家图片
程亮 研究员

苏州大学

苏州大学功能纳米与软物质研究院

个人履历

学习工作经历:

2014年7月-至今,苏州大学功能纳米与软物质研究院,副教授

2015年8月-2016年8月,美国威斯康辛大学麦迪逊分校,访问学者

2012年8月至2014年7月,苏州大学功能纳米与软物质研究院,讲师

2012年6月在苏州大学功能纳米与软物质研究院获得博士学位

2009年6月在安徽师范大学获得无机化学硕士学位

2006年6月在安徽工程大学获得应用化学学士学位


研究方向

1)新型拓扑绝缘体纳米材料设计及其在生物成像与治疗中的应用

2)功能复合纳米材料的构建及其在生物成像与治疗中的应用

3)超小功能纳米材料合成及其体内代谢行为研究

从2008年起在国际学术期刊共发表学术论文共100余篇,其中第一作者或通讯作者论文40篇,部分发表在Chem. Rev. Angew. Chem. Int. Ed., Adv. Mater., ACS Nano, Adv. Funct. Mater., Biomaterials, Nano Res., Nanoscale上,文章发表至今被引用5500次,H-index因子为41。获得国家自然科学基金面上项目、国家自然自然科学青年基金、江苏省优秀青年基金、江苏省自然科学青年基金、中国博士后特别资助、中国博士后基金和苏州大学东吴学者(第二层次)等项目资助。目前的研究方向主要集中在功能性复合纳米材料设计及其在生物医学成像、药物输送和癌症综合治疗等方面的应用。


研究成果

获得奖项:

2016年获得苏州大学考核优秀工作者

2015年获得苏州大学考核优秀工作者

2014年获得苏州大学考核优秀工作者

2013年获得苏州大学优秀博士论文

2013年获得第三届中加纳米论文优秀墙报奖

2012年获得苏州大学优秀毕业生,苏州大学学术标兵,朱敬文特别奖学金

代表性论文:

[38] Cheng, L.*; Jiang, D.; Kamkaew, A.; Valdovinos, H. F.; Im, H.-J.; Feng, L.; England, C. G.; Goel, S.; Barnhart, T. E.; Liu, Z.; Cai, W.* Renal-Clearable PEGylated Porphyrin Nanoparticles for Image-Guided Photodynamic Cancer Therapy. Adv. Funct. Mater., 2017, In press

[37] Chen, Y.; Cheng, L.*; Dong, Z.; Chao, Y.; Lei, H.; Zhao, H.; Wang, J.; Liu, Z*. Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. Angew. Chem. Inter. Ed.,2017, In press.

[36] Jin, Q.; Zhu, W.; Jiang, D.; Zhang, R.; Kutyreff, C. J.; Engle, J. W.; Huang, P.; Cai, W.*; Liu, Z.; Cheng, L.* Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy. Nanoscale2017, 9, 12609-12617.

[35] Shen, S.; Jiang, D.; Cheng, L.*; Chao, Y.; Nie, K.; Dong, Z.; Kutyreff, C. J.; Engle, J. W.; Huang, P.; Cai, W.*; Liu, Z.* Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free 64Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer. ACS Nano2017. In press.

[34] Shen, S.; Chao, Y.; Dong, Z.; Wang, G.; Yi, X.; Song, G.; Yang, K.; Liu, Z.; Cheng, L.* Bottom-Up Preparation of Uniform Ultrathin Rhenium Disulfide Nanosheets for Image-Guided Photothermal Radiotherapy. Adv. Funct. Mater.2017, 27, In press.

[33] Xuan, J., Wang, Z., Chen, Y., Liang, D., Cheng, L.*, Yang, X., Liu, Z., Ma, R., Sasaki, T., Geng F.*, Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew. Chem. Inter. Ed., 2016, 128, 14789-14794.

[32] Cheng, L.*; Kamkaew, A.; Sun, H.; Jiang, D.; Valdovinos, H. F.; Gong, H.; England, C. G.; Goel, S.; Barnhart, T. E.; Cai, W.* Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles.ACS Nano2016.10, 7721-7730

[31] Cheng,L.; Kamkaew, A.; Shen, S. D.; Valdovinos, F. H.; Sun, H.Y.; Hernandez, R.; Goel, S.; Liu, T.; Thompson, R. C.; Barnhart, E. T.; Liu, Z.*, and Cai W. B.*. Facile Preparation of Multifunctional WS2/WOx Nanodots for Chelator-Free 89Zr-Labeling and In Vivo PET Imaging. Small, 2016, 12, 5750-5758

[30] Cheng, L.*; Shen, S.; Shi, S.; Yi, Y.; Wang, X.; Song, G.; Yang, K.; Liu, G.; Barnhart, T. E.; Cai, W.; Liu, Z. FeSe2-Decorated Bi2Se3 Nanosheets Fabricated via Cation Exchange for Chelator-Free 64Cu-Labeling and Multimodal Image-Guided Photothermal-Radiation Therapy. Adv. Funct. Mater., 2016, 26, 2185-2197.

[29] Kamkaew, A.+, Cheng, L.+, Goel, S., Valdovinos, F., Barnhart, E., Liu, Z., Cai W.,*, Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles, ACS Appl. Mater. Interfaces 2016, 8, 26630-26637 (equal contribution).

[28] Chao, Y.; Wang, G.; Liang, C.; Yi, X.; Zhong, X.; Liu, J.; Gao, M.; Yang, K.*; Cheng, L.*; Liu, Z.* Rhenium-188 Labeled Tungsten Disulfide Nanoflakes for Self-Sensitized, Near-Infrared Enhanced Radioisotope Therapy. Small2016, 12, 3967-3975.

[27] Liu, T.; Chao, Y.; Gao M.; Liang C.; Chen, Q.; Song, G. S.; Cheng, L.*; Liu, Z.. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy, Nano Res., 2016, 9, 3003-3017

[26] Hao, J.; Song, G.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.*; Liu, Z.* In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS2 (M = Mo, W, Ti) Nanosheets. Adv. Sci.2016, 4, 1600160.

[25] Fu, T.T., Chen, Y.Y. Hao, J.L., Wang, X.Y., Liu, G., Li, Y. G.*, Liu, Z., Cheng, L.*, Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy, Nanoscale, 2015, 7, 20757-20768

[24] Cheng, L.*, Yuan, C., Shen, S.D, Yi, X., Gong, H., Yang, K., Liu, Z.*, “Bottom-Up Synthesis of Metal-Ion-Doped WS2 Nanoflakes for Cancer Theranostics”, ACS Nano, 2015, 9, 11090-11101.

[23] Gong, Q.F†, Cheng, L†, Liu, C.H., Zhang, M., Feng, Q.L., Ye, H.L., Zeng, M., Xie, L.M., Liu, Z*, Li, Y.G.*, “Ultrathin MoS2(1�x)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction” ACS Catal., 2015 ,5, 2213-2219

[22] Zhu, W.W, Liu, K., Sun, X.Q, Wang, X., Li, Y.G, Cheng, L.*, Liu, Z., “Mn2+-Doped Prussian Blue Nanocubes for Bimodal Imaging and Photothermal Therapy with Enhanced Performance”, ACS Appl. Mater. Interfaces, 2015, 27, 11575-11582.

[21] Cheng, L.; Wang, C.; Feng, L.Z.; Yang, K.; Liu, Z.*, Functional Nanomaterials for Phototherapies of Cancer. Chem. Rev., 2014, 114, 10869-10939.

[20] Cheng, L.; Huang, W.; Gong, Q.; Liu, C.; Liu, Z.*; Li, Y.G*; Dai, H., Ultrathin WS2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed.2014,53 , 7860-7863(Back cover, hot article)

[19] Cheng, L.*; Gong, H.; Zhu, W.; Liu, J.; Wang, X.; Liu, G*.; Liu, Z*., PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials,2014,35, 9844-9852.

[18] Song, X.; Gong, H.; Liu, T.; Cheng, L.*; Wang, C.; Sun, X.; Liang, C.; Liu, Z.*, J-Aggregates of Organic Dye Molecules Complexed with Iron Oxide Nanoparticles for Imaging-Guided Photothermal Therapy Under 915-nm Light. Small 2014,10, 4362-4370.

[17] Wang, X.; Liu, K.; Yang, G.; Cheng, L.*; He, L.; Liu, Y.; Li, Y.; Guo, L.; Liu, Z.*, Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. Nanoscale2014,6, 9198-9205;

[16] Shen, J.; Li, K.; Cheng, L.*; Liu, Z.; Lee, S.-T.; Liu, J.*, Specific Detection and Simultaneously Localized Photothermal Treatment of Cancer Cells Using Layer-by-Layer Assembled Multifunctional Nanoparticles. ACS Appl. Mater.Interfaces2014,6 , 6443-6452;.

[15] Cheng, L.; Liu, J.J.; Gu, X.; Gong, H., Shi, X.Z.; Liu, T., Wang, C., Wang, X.Y., Liu, G.; Xing, H.Y.; Bu, W.B.; Sun, B.Q.; Liu, Z*., PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT / photoacoustic imaging guided photothermal therapy. Adv. Mater.,2014, 26, 1886-1893,(inside cover).

[14] Cheng, L.; He, W.; Gong, H.; Wang, C.; Chen, Q.; Cheng, Z.; Liu, Z., PEGylated Micelle Nanoparticles Encapsulating a Non-Fluorescent Near-Infrared Organic Dye as a Safe and Highly-Effective Photothermal Agent for In Vivo Cancer Therapy.Adv. Funct. Mater.,2013,23, 5893-5902. (Highlighted by Materials Views and Materials Views China)

[13] Cheng, L.; Wang, C.; Ma, X.; Wang, Q.; Cheng, Y.; Wang, H.; Li, Y.; Liu, Z*., Multifunctional Upconversion Nanoparticles for Dual-modal Imaging Guided Stem Cell Therapy under Remote Magnetic Control. Adv. Funct. Mater.2013, 23, 272-280.

[12] Cheng, L; Wang, C.; Liu, Z*., Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale2013, 5, 23-37.

[11] Liu, Z.; Cheng, L*.; Zhang, L.; Yang, Z.; Liu, Z*.; Fang, J.*, Sub-100 nm hollow Au-Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy. Biomaterials 2014,35, 4099-4107.

[10] Liu, Y.; Yang, K.; Cheng, L*.; Zhu, J.; Ma, X.; Xu, H.; Li, Y.; Guo, L.; Gu, H.; Liu, Z*., PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomedicine: Nanotechnology, Biology and Medicine2013,9 (7), 1077-1088.

[9] Yin, S.; Li, Z.; Cheng, L* Wang, C.; Liu, Y.; Chen, Q.; Gong, H.; Guo, L.; Li, Y.; Liu, Z., Magnetic PEGylated Pt3Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study. Nanoscale2013, 5, 12464-12473.

[8] Cheng, L.; Yang, K.; Li, Y.; Zeng, X.; Shao, M.; Lee, S.-T.; Liu, Z*., Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials2012, 33, 2215-2222.

[7] Cheng, L.; Yang, K.; Chen, Q.; Liu, Z*., Organic nanoparticles for ultra-effective in vivo near-infrared photothermal therapy of cancer. ACS Nano2012, 6, 5605-5613, (Highlighted by C&E News ).

[6] Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee, S.-T.; Liu, Z*., Facile preparation of multifunctional upconversion nanoprobes for multi-modal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed2011, 50, 7385-7390.

[5] Cheng, L.; Yang, K.; Lu, X.; Shao, M.; Liu, Z*., In vivo Pharmacokinetics, Long-term Biodistribution and Toxicology Study of Functionalized Upconversion Nanoparticles in Mice. Nanomedicine2011, 6, 1327-1340

[4] Cheng, L.; Yang, K.; Shao, M.; Lee, S.-T.; Liu, Z*., Multicolor In Vivo Imaging of Upconversion Nanoparticles with Emissions Tuned by Luminescence Resonance Energy Transfer. J. Phys. Chem. C2011, 115, 2686-2692

[3] Cheng, L.; Yang, K.; Zhang, S.; Shao, M.; Lee, S., Liu, Z.*,Highly-sensitive Multiplexed in vivo Imaging Using PEGylated Upconversion Nanoparticles. Nano Res2010, 3, 722-732.

[2] Cheng, L.; Shao, M*.; Wang, X.; Hu, H., Single-Crystalline Molybdenum Trioxide Nanoribbons: Photocatalytic, Photoconductive, and Electrochemical Properties. Chem. Eur. J. 2009, 15, 2310-2316.

[1] Cheng, L.; Shao, Q.; Shao, M*.; Wei, X.; Wu, Z., Photoswitches of One-Dimensional Ag2MO4 (M) Cr, Mo, and W). J. Phys. Chem. B 2009, 113, 1764-1768


热门排行
1
采用电纺丝法制备了前驱体纳米纤维膜,固化的纳米纤维均匀分布。在随后的热解过程中,PVP被碳化成相互连接的3D碳骨架,纳米纤维形态得到了很好的保存。

分享

为了更好的浏览体验,请使用谷歌,360极速,火狐或Edge浏览器