400-8910-119
首页 > 文献资料 > ES-Bank > 详情
ZnO/TiO2/C nanofibers by electrospinning for high-performance lithium storage
2020/12/25 15:48:24 admin

Long cyclic stability and high rate performance have been the major challenges of lithium-ion batteries (LIBs). Composite metal oxides as a promising anode materials for LIBs have been studied extensively due to their high theoretical capacity, abundant reserves and large-scale production. Yet, their practical applications are seriously restricted by the volume change and poor conductivity. Herein, the ZnO/TiO2/C nanofibers with different mole ratios of Ti/Zn were successfully synthesized by electrospinning method. The ZnO/TiO2/C nanofibers with a Zn/Ti mole ratio of 1:1 exhibited the highest reversible capacity of 912 mAh g(-1)after 500 cycles at 100 mA g(-1). Meanwhile, the ZnO/TiO2/C nanofibers also possess an excellent rate capability even at a high current density up to 5 A g(-1). The Coulombic efficiency of ZnO/TiO2/C nanofibers has been steady at around 100% regardless of rate and long cycle. The good electrochemical properties of ZnO/TiO2/C nanofibers with a Zn/Ti mole ratio of 1:1 may be attributed to the synergistic effect of C and the introduction of interface between ZnO and TiO2. Overall, the ZnO/TiO2/C nanofibers were demonstrated unexpectedly high specific capacity retention, high reversibility and excellent rate performance as the anode materials of LIBs.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享