400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Morphological and Thermal Properties of Poly(Vinyl Alcohol)/Layered Double Hydroxide Hybrid Nanocomposite Fibers
2020/12/25 15:48:23 admin

Nanolayered particulate of Zn-based layered double hydroxide (LDH) was prepared by a low temperature greener sol-gel method. X-ray diffraction (XRD) studies were performed on the particles annealed at different temperatures. Hexagonal crystal structure of the as-grown LDH particulates was observed. The crystal structure was modified to tetragonal structure of layered double oxide (LDO) on annealing at 250 degrees C. Rietveld fittings showed a collapse of interlayer separation distance along the preferred orientation of the LDH particles as a result of heat treatment. Further, LDH particles were used as fillers of electrospun poly(vinyl alcohol) (PVA) fibers. Heat treatment of the polymer fibers was also performed at different temperatures, and thermal changes were studied by thermogravimetric analysis (TGA), Raman spectroscopy, and scanning electron microscopy (SEM) techniques. Improved interaction of fibers with LDH nanoparticles was observed and ascribed to LDH-related LDO phase transformation at higher temperature. Thermal mechanisms of the rapid weight loss in filled fibers were discussed in comparison to the pure PVA fiber losses. Experimental Raman frequencies of the composite fibers were compared with the calculated Raman modes of the enol and ZnO monomers. The molecular vibration frequencies were found to differ significantly due to heat treatment. Finally, the role filler in the faster and greener thermal decomposition of polymeric fibers was also discussed in the present work.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享