400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Warp-Knitted Spacer Fabrics: A Versatile Platform to Generate Fiber-Reinforced Hydrogels for 3D Tissue Engineering
2020/9/27 13:08:06 admin

Mesenchymal stem cells (MSCs) possess huge potential for regenerative medicine. For tissue engineering approaches, scaffolds and hydrogels are routinely used as extracellular matrix (ECM) carriers. The present study investigated the feasibility of using textile-reinforced hydrogels with adjustable porosity and elasticity as a versatile platform for soft tissue engineering. A warp-knitted poly (ethylene terephthalate) (PET) scaffold was developed and characterized with respect to morphology, porosity, and mechanics. The textile carrier was infiltrated with hydrogels and cells resulting in a fiber-reinforced matrix with adjustable biological as well as mechanical cues. Finally, the potential of this platform technology for regenerative medicine was tested on the example of fat tissue engineering. MSCs were seeded on the construct and exposed to adipogenic differentiation medium. Cell invasion was detected by two-photon microscopy, proliferation was measured by the PrestoBlue assay. Successful adipogenesis was demonstrated using Oil Red O staining as well as measurement of secreted adipokines. In conclusion, the given microenvironment featured optimal mechanical as well as biological properties for proliferation and differentiation of MSCs. Besides fat tissue, the textile-reinforced hydrogel system with adjustable mechanics could be a promising platform for future fabrication of versatile soft tissues, such as cartilage, tendon, or muscle.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享