400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Enzymatic Polymerization of Poly(glycerol-1,8-octanediol-sebacate): Versatile Poly(glycerol sebacate) Analogues that Form Monocomponent Biodegradable Fiber Scaffolds
2020/9/27 13:08:06 admin

A family of poly(glycerol sebacate) (PGS) analogues were synthesized by Candida antarctica lipase B (CALB) catalysis to tailor biomaterial properties. Different fractions of glycerol (G) units in PGS were replaced by 1,8-octanediol (0) units. Poly(glycerol-1,8-octanediol-sebacate), PGOS, synthesized by CALB catalysis with a 1:3 molar ratio of G to O units has M-n and M-w values of 9500 and 92,000, respectively. PGS undergoes fiber fusion during electro-spinning, and cross-linked PGS rapidly resorbs when implanted. By decreasing the molar ratio of glycerol-to-octanediol from 1:1 to 1:4, the peak melting temperature (T-m) increased from 27 to 47 degrees C. PGOS with 1:3 G to O units was electrospun into nanofibers without the need for a second component. The copolymer is semicrystalline and, when cross-linked, undergoes slow in vitro mass loss (3.5 +/- 1.0% in 31 days) at pH 7.4 and 37 degrees C. Furthermore, PGOS cross-linked films have an elastic modulus of 106.1 +/- 18.6 MPa, which is more than 100 times that of cross-linked PGS. New PGOS polymers showed tunable molecular weights, better thermal properties, and excellent electrospinnability. This work expanded PGS analogues' function, making these suitable biodegradable polymers for various biomedical applications.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享