400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Acetylated hyaluronic acid effectively enhances chondrogenic differentiation of mesenchymal stem cells seeded on electrospun PCL scaffolds
2020/9/27 13:08:06 admin

Construction of scaffolds which are similar to natural niches regarding both biochemical composition and mechanical characteristics has gained great attention in the field of tissue engineering. However, application of natural polymers, such as hyaluronic acid, is challenging in construction of scaffolds due to physicochemical properties, difficult to use in electrospinning and low cell adhesion rate. In this study, HA was acetylated to make it soluble in high polarity solvent and blended with PCL for construction of nanofibrous composite (ac-HA/PCL) scaffolds. Chondroinductivity of the constructed scaffolds was investigated using human mesenchymal stem cells (hADSCs). The presence of acetyl groups, as well as morphology and biocompatibility of the composite scaffolds were characterized by HNMR, FTIR, SEM and MTT assay respectively. Expression of cartilage-specific genes (SOX9, Col II and Aggrecan) was monitored by Real-time PCR. Significant increase in expression of Sox9 and Col II as the markers of chondrogenic differentiation as well as the results of Alcian blue staining, indicated the chondro-inductive potential of HA/PCL nanofibrous scaffolds. Acetylated HA was biocompatible with chondroinductivity features, therefore it not only had the positive characteristics of natural HA, but also enhanced the cellular attachment and application potential.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享