400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Exceptionally thermal-stable Al2O3/TiO2 nanofibers by depressing surface-initiated grain growth as new supports for anti-sintering Pt nanoparticles
2020/9/27 13:08:05 Fu, W. Li, Z. Xu, W. Wang, Y. Sun, Y. Dai, Y.

Electrospun ceramic nanofibers can be ideal supports for catalyst, but commonly restricted by the rapid grain growth during fabrication and thus lose their superior functions. In this work, we reported grain growth suppressed nanofibers made of a blend of TiO2 and Al2O3 with an average crystal size of 22.2 nm and 47.1 wt% of anatase on 900 degrees C. Al2O3 preferred to locate at the grain boundaries of TiO2 nanograins, significantly hindering the coalescence among the neighboring TiO2 nanograins. More intriguingly, Al2O3 spontaneously migrated to the surface and thus naturally formed a particle-on-fiber morphology. When serving as support, Al2O3/TiO2 nanofibers offered promoted adhesion for Pt nanoparticles, by taking advantages of the well-preserved grain boundaries and anatase phase. Moreover, the dual-oxide construction built kinetic bottleneck to prevent Pt nanoparticles from moving across the support to attach to or merge with each other. Therefore, Pt nanoparticles can be stabilized against sintering up to 500 degrees C with an ultra-close neighboring distance of 4.56 nm. This sinter-resistant catalyst exhibited high activities toward both liquid-phase hydrogenation and gas-phase oxidation reactions (i.e. soot oxidation) at high temperatures. Such a robust and thermally stable catalyst can be further used for catalytic soot oxidation, giving great prospects for emission control. (C) 2020 Elsevier Ltd. All rights reserved.


  • Journal: Materials Today Nano
  • Volume: 11
  • Issue:
  • Pages:
  • ISSN: 2588-8420
  • DOI:
  • Year: 2020
  • Number:
  • Type: Journal Article
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享

为了更好的浏览体验,请使用谷歌,360极速,火狐或Edge浏览器