In this study, we have developed a simple and efficient single-nozzle electrospinning strategy involving the phase separation of polystyrene and poly(vinylpyrrolidone) to construct cable-like core-shell mesoporous SnO(2)nanofibers. Compared with traditional multi-axial electrospinning approaches to the synthesis of core-shell nanofibers, the single-nozzle electrospinning process requires no complex multi-axial electrospinning setups or post-treatments, just drying and annealing after electrospinning. The obtained SnO(2)nanofibers show promise as a sensing material for formaldehyde at low concentrations, the detection limit being about 1 ppm. Furthermore, the nanofibers exhibited good cycling stability and selectivity, with response and recovery times toward 10 ppm formaldehyde being approximately 18 and 196 s, respectively, at an operating temperature of 195 degrees C.