This study deals with the fabrication of a novel polyketone nanofiber-reinforced UV-curable polyurethane acrylate nanocomposite. An aliphatic polyketone nanofibrous mat was proficiently prepared by electrospinning using a solvent mixture of methylene chloride and trifluoroacetic acid. The outstanding characteristics of polymer nanofibers including a small pore size, a high aspect ratio and molecular orientation and an excellent mechanical performance offer the use of nanofibers as reinforcement in making nanocomposites. We fabricated a novel highly transparent and flexible nanocomposite film based on casting, electrospinning and UV-curing processes. This method allowed significant enhancement of the mechanical properties using a very small amount (approximately 3.5 gsm) of polyketone nanofiber. The yield strength and Young's modulus of the nanocomposite were improved by up to 61% and 60%, respectively, compared to a UV-cured polyurethane acrylate film. The reinforcing effect of nanofibers was accomplished without sacrificing the transparency and flexibility of polyurethane acrylate. The morphologies of the nanofibers and fiber-resin interface as well as the characteristics of the nanocomposite films were also studied. The effective use of nanofibers as a reinforcement and the preparation of a nanocomposite along with its characterization in comparison to a UV-cured polyurethane acrylate film are also discussed. (c) 2020 Society of Chemical Industry