400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Embedding CoMoO4 nanoparticles into porous electrospun carbon nanofibers towards superior lithium storage performance
2020/7/31 11:15:42 admin

CoMoO4 nanoparticles have been successfully in-situ formed and simultaneously embedded within the porous carbon nanofibers (CoMoO4/CNFs) via a facile electrospinning-annealing strategy. The porous CoMoO4/CNFs exhibit a specific surface area of 255.3 m(2)/g and a pore volume of 0.52 cc/g with average pore diameter of 43.5 nm. The carbon content in the CoMoO4/CNFs can be readily controlled by adjusting the annealing temperature. When examined as anode materials for lithium ion batteries (LIBs), the CoMoO4/CNFs demonstrate superior electrochemical performance, delivering a high reversible capacity of 802 mA h/g after 200 cycles at 200 mA/g and a high-rate capacity of 574 mA h/g at 2000 mA/g. The excellent lithium storage behavior can be attributed to the incorporation of CoMoO4 nanoparticles into the porous N-doped graphitic carbon nanofibers, which efficiently buffer the volume changes of CoMoO4 upon lithiation/delithiation and maintain the overall electrode conductivity/integrity. (C) 2019 Elsevier Inc. All rights reserved.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享