400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: characterization and potential applications
2020/7/31 11:15:42 admin

Over the past two decades, the advancements of nanotechnology, particularly nanomaterials science, have produced a broad range of nanomaterials (NMs) that include nanofibers (NFs), nanoparticles (NPs), nanorods (NRs), and nanowires (NWs), which have been technically and practically examined over various applications. NFs have shown excellent potential for diverse applications in materials science, chemical industry, energy storage, and structural support due to a combination of remarkable properties such as high surface area, great electrical conductivity, and high mechanical stability. To date, a large number of mechanical and chemical synthetic methodologies (i.e., thermal-phase separation, electrospinning, pulling, self-assembly, and template processes) have been proposed to fabricate a new generation of NFs. In order to improve the performance of NFs, several functionalization steps have been proposed. The functionalization of NFs plays a prominent role in commercializing them on the industrial scale. In the current review article, recent progress in the fabrication and characterization of NFs is highlighted and reviewed to provide comprehensive methods on synthesizing a new generation of well-modified NFs with superior structural, physicochemical, and textural characteristics. In addition, the performance of synthesized NFs in a variety of practical applications, such as electrodes for fuel cells and lithium batteries, water and air purification, biomedicine, and catalysis, is reviewed.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享