400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering
2020/7/31 11:15:42 admin

In recent years, plant based scaffold due to its inherent properties such as mechanical stability, renewability, easy mass production, inexpensiveness, biocompatibility and biodegradability with low toxic effects have received much attention in the field of bone tissue engineering. Design of good tissue compatible plant based polymer scaffold plays a vital role in biomedicine, nanomedicine and in various tissue engineering applications. The present study focused on the fabrication of a novel herbal scaffold using the medicinal plants Spinacia oleracea (SO) and Cissus quadrangularis (CQ) extracts incorporated with Alginate (Mg), Carboxy Methyl Cellulose (CMC) by lyophilization method. The structural nature and the properties of prepared scaffold were analyzed by XRD, FE-SEM, RIR, EDAX, TGA, swelling ratio, porosity, in-vitro degradation and cell viability studies. The biocompatible nature of the plant based polymer scaffold was assessed using MG-63 Human Osteosarcoma cell line. The investigation of biocompatibility study showed that Alg/CMC/SO scaffold expressed higher cell viability than Alg/CMC/SO-CQ scaffold, which possess better cellular biocompatibility. The results of the present study suggested that plant based Alg/CMC-SO scaffold serve as a potential biopolymer scaffold which could be further exploited for bone tissue applications. (C) 2020 Elsevier B.V. All rights reserved.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享