Anti-biofilm Activity of Solvent-Cast and Electrospun Polyhydroxyalkanoate Membranes Treated with Lysozyme
2019/11/27 21:42:53
admin
Biofilms consist of groups of microorganisms that adhere to surfaces, such as wound and implant surfaces, making it difficult to prevent or remove their formation by antibiotic treatment, due to the innate resistance of the biofilm. Effective treatments of medical biofilms are limited. Polyhydroxyalkanoate (PHA) is a biodegradable and biocompatible polymer that is a suitable alternative to petroleum based polymers for use as a raw material for medical applications. In this study, membranes of the copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] containing different HHx monomer contents were used due to its porosity and flexibility, and different sheets were prepared by solvent-casting and electrospinning methods. The sheets were loaded with lysozyme in order to measure the maximum amount of protein adsorption and to examine the ability of immobilized enzyme to inhibit biofilm formation and detach previously established biofilms. Our results have shown maximum loading of 16.1 A mu g enzyme per 9.5 mm(3) discs, and these sheets are effective for inhibiting biofilm formation. Also, lysozyme loaded, eletrospun sheets were observed to more effectively inhibit biofilm formation, as compared to solvent-cast sheets. Based on this study, P(HB-co-HHx) sheets are a suitable material for being used as a potential raw material for fabrication of wound dressings to be used in anti-biofilm treatments.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复