400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Fabrication of curcumin-loaded electrospun nanofiberous polyurethanes with anti-bacterial activity
2019/11/27 21:42:20 admin
Two series of polyurethane (PU), based on polycaprolactone (PCL) as soft segments with two different molecular weights (2000 and 530 Da), and hexamethylene diisocyanate (HDI) and 1,4-butandiol (BDO) as hard segments were synthesized to fabricate curcumin-loaded electrospun nanofibrous PCL-based PU substrate. Chemical structures of the synthesized PUs were characterized by FTIR and NMR spectroscopy techniques. The thermal properties were analyzed by differential scanning calorimetry (DSC) and surface hydrophilicity was studied by static contact angle and bulk hydrophilicity was evaluated by water uptake test. Thereafter, bead-free PU nanofiberous substrate containing curcumin was fabricated by electrospinning and morphology of the mats was observed by scanning electron microscopy (SEM). Mechanical properties of the electrospun mats in comparison with polymeric films were assessed by a universal test machine. The in vitro release of curcumin was studied by UV-Vis spectroscopy. The optical density of the bacterial solutions was used to evaluate the antibacterial activity of the curcumin-loaded nanofibrous mats against Escherichia coli (E-coli ATCC: 25922). The results showed that curcumin-loaded PU synthesized by PCL with molecular weight of 2000 Da displayed better mechanical properties as well as better antibacterial properties in wound dressing application.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享