400-8910-119
首页 > 文献资料 > ES-Bank > 详情
A novel 3-D graphite structure from thermally stabilized electrospun MWCNTs/PAN nanofibril composite fabrics
2019/11/27 21:41:29 admin
Multiwall carbon nanotubes (MWCNTs) and nanofibers are characterized by their high surface energy. In this paper, such a cohesive energy was activated by using hot-pressing technique to build strong and flexible MWCNTs/carbon nanofibril hybrid fabrics. MWCNTs of three different diameters, and each with five different weight concentrations, were dispersed in 10 wt% polyacrylonitrile (PAN)/DMF polymer solution. PAN/DMF+ MWCNT dispersions were electrospun under optimum electrospinning conditions, and the collected fabrics were thermally stabilized under a static pressure. They were then re-heat-treated in a tube furnace with a nitrogen flow. Strength of 70 MPa, modulus of 4 GP, and strain of 5 % were reported for the fabrics. Modulus of 100 GPa was reported for a single nanofibril composite. A novel 3-D graphite structure has been discovered as a result of the interaction between MWCNTs and stabilized PAN nanofibers during graphitization at much lower temperature and pressure. Fabrics were investigated by using SEM, HRTEM, AFM, and x-ray diffraction.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享