Poly (L-lactic acid)/calcium-deficient nanohydroxyapatite electrospun mats for bone marrow stem cell cultures
2019/11/27 21:40:16
admin
Electrospinning of bioresorbable polymers is a promising and valuable scaffolding technique. To improve its potential applications, the addition of specific fillers has been considered. This paper reports the fabrication of electrospun poly(L-lactic acid)/Ca-deficient-hydroxyapatite (PLLA/d-HAp) mats, the content of nanosized d-HAp ranged between 1 and 8 wt%. All samples consisted of micrometric and submicrometric fibers, comprising 2D voids of 8 and 13 mm for PLLA and PLLA/d-HAp mats, respectively. The surface of the electrospun fibers was characterized by an uniform distribution of nanopores. Hybrid mats loaded with 1 wt% d-HAp showed the most homogeneous microstructure, differently from the mats loaded with 4 and 8 wt% d-HAp due to the presence of microagglomerates. The viscoelastic properties of PLLA/d-HAp hybrids were characterized by a decreasing trend of the storage modulus with increases in the nanofiller content. The microstructure, viscoelastic behavior, and cytocompatibility were investigated using murine bone marrow mesenchymal stem cells. On the basis of the biological data, the electrospun PLLA and PLLA/d-HAp mats can be regarded as potential scaffolds for bone marrow mesenchymal stem cells culture.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复