Nanofiber-based brush-distributed sensor for detecting heavy metal ions
2019/11/27 21:39:31
admin
A brush-distributed metal oxidation sensing nanostructure is developed by growing zinc oxide (ZnO) nanorods on electrospun titanium dioxide (TiO2) nanofibers to improve ions adsorption of lead and copper. A pair of inductive plane coils are designed to measure inductive variation induced by the adsorbed ion concentration. The brush-distributed ZnO-TiO2 nanofibers are fabricated by using electrospinning and hydrothermal methods that are deposited on the PVDF-formed nanofiber membrane to enhance copper and lead ions adsorption efficiency. The sensitivity has been promoted based on the van der Waals force and produced hydroxyl from grown surface nanorods. The TiO2 structure was examined by checking XRD patterns. These diffraction peaks are indexed as the (101), (004), (200), and (105) of anatase TiO2 and are consistent with the standard data (JCPDS No. 78-2486). The circular coils are designed and simulated using the finite element method to sense metal ions by measuring concentration-dependent magnetic flux variation. The developed ZnO-TiO2 ion sensing composites include the following advantages: simple fabrication process, low cost, high selectivity, highly effective adsorption, specific surface area and porosity, rapid response, and good repeatability and reproducibility.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复