400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Phase-change core/shell structured nanofibers based on eicosane/poly(vinylidene fluoride) for thermal storage applications
2019/11/27 21:37:56 admin
We fabricated eicosane/poly(vinylidene fluoride) (PVDF) core/shell nanofibers by melt coaxial electrospinning as potential heat-storage applications. Eicosane, a hydrocarbon with melting point near the human body temperature and high latent heat, was chosen as the core material. Melted eicosane and PVDF solutions were coaxially electrospun using a double spinneret, in which melted eicosane was fed at 0.090-0.210 mL/h while the feeding rate of PVDF solution was maintained constant at 1.500 mL/h. The applied voltage and working distance were maintained constant at 12 kV and 17 cm, respectively. Good core/shell structure of nanofibers was observed at core feed rates of 0.090-0.180 mL/h by transmission electron microscopy. Differential scanning calorimetry and thermogravimetric analysis values indicated good thermal stability and high energy-storage capacity of the obtained nanofibers. The highest amount of eicosane encapsulated in the electrospun core/shell nanofibers reached 32.5 wt% at core feed rate 0.180 mL/h and had a latent heat of 77 Jig at melting point 39.2 degrees C. These shape-stabilized core/shell composite nanofibers showed good thermoregulating properties and had sufficiently high tensile strength for potential energy-storage applications, especially in smart textiles.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享