Mechanical characterization of electrospun polycaprolactone (PCL): A potential scaffold for tissue engineering
2019/11/27 21:37:41
admin
This paper investigates the mechanical behavior of electrospun polycaprolactone (PCL) under tensile loading. PCL in bulk form degrades slowly and is biocompatible, two properties that make it a viable option for tissue engineering applications in biomedicine. Of particular interest is the use of electrospun PCL tubes as scaffolds for tissue engineered blood vessel implants. Stress relaxation and tensile tests have been conducted with specimens at room temperature 21 degrees C and 37 degrees C.Additionally, to probe the effects of moisture on mechanical behavior specimens were tested either dry (in air) or submerged in water In general, the electrospun PCL was found to exhibit rate dependence, as well as some dependence on the test temperature and on whether the sample was wet or dry. Two different models were investigated to describe the experimentally observed material behavior. The models used were Fung's theory of quasilinear viscoelasticity (QLV) and " A the eight-chain model developed for rubber elastomers by Arruda and Boyce (1993, Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials," J. Mech. Phys. Solids, 4](2), pp. 389-412). The implementation and fitting results, as well as the advantages and disadvantages of each model, are presented. In general, it was found that the QLV theory provided a better fit.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复