400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Quasi-solid-state Electrolyte for Dye Sensitized Solar Cells Based on Nanofiber PMA-PVDF and PMA-PVDF/PEG Membranes
2019/11/27 21:37:17 admin
Novel electrospun membranes quasi-solid electrolytes based on blends of polymethylacrylate (PMA) - polyvinylidene fluoride (PVDF), and PMA-PVDF/PEG (polyethylene glycol) are prepared by electrospinning technique and applied as quasi-solid state electrolytes in dye sensitized solar cells (DSSCs). The membranes are characterized by Fourier transform infrared (FT-IR) spectrophotometer, differential scanning calorimeter (DSC), Scanning electron microscopy (SEM), and Electrochemical impedance spectroscopy. The crystallinity obtained from the DSC data increased with the increase of PVDF wt% in PMA-PVDF blend and then decreased for the PMA-PVDF/PEG membranes. The fully interconnected porous structure of the host polymer membranes of PMA-PVDF (4: 6 wt%) exhibited a high electrolyte uptake reached to similar to 265% and an ionic conductivity of 2.1x10(-3) S cm(-1), which is increased to 406.3%, and 3.2 x 10(-3) S cm(-1), respectively for PMA-PVDF/PEG (4: 6: 4 wt%) membrane. DSSC is assembled by PMA-PVDF(4: 6 wt%) and attained an overall energy conversion efficiency of 6.6% at light intensity of 100 mW cm(-2). The presence of 4 w% PEG in the electrolyte membrane increased the energy conversion efficiency to 7 % giving a promise candidate for scaling up this type of DSSCs.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享