400-8910-119
首页 > 文献资料 > ES-Bank > 详情
A Novel Device to Quantify the Mechanical Properties of Electrospun Nanofibers
2019/11/27 21:37:16 admin
Mechanical deformation of cell-seeded electrospun matrices plays an important role in cell signaling. However, electrospun biomaterials have inherently complex geometries due to the random deposition of fibers during the electrospinning process. This confounds attempts at quantifying strains exerted on adherent cells during electrospun matrix deformation. We have developed a novel mechanical test platform that allows deposition and tensile testing of electrospun fibers in a highly parallel arrangement to simplify mechanical analysis of the fibers alone and with adherent cells. The device is capable of optically recording fiber strain in a cell culture environment. Here we report on the mechanical and viscoelastic properties of highly parallel electrospun poly(epsilon-caprolactone) fibers. Force-strain data derived from this device will drive the development of cellular mechanotransduction studies as well as the customization of electrospun matrices for specific engineered tissue applications. [DOI: 10.1115/1.4007635]
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享