400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Airbrushed Composite Polymer Zr-ACP Nanofiber Scaffolds with Improved Cell Penetration for Bone Tissue Regeneration
2019/11/27 21:35:39 admin
Electrospun polymer nanofibers have multiple applications in the tissue engineering field despite limited cell penetration within the scaffolds and slow synthesis rates. Airbrushing, a proposed alternative to traditional electrospinning, is a technique capable of synthesizing open structure nanofiber scaffolds at high rates. In this study, three biocompatible polymers-poly-D,L-lactic acid (P-DL-LA), polycaprolactone (PCL), and poly(methyl methacrylate) (PMMA), were airbrushed to form networks for bone tissue regeneration. All three polymers were loaded with up to 20% (w/w) zirconium-modified amorphous calcium phosphate (Zr-ACP). A simple one-step mix and straightforward material deposition yielded open structure networks with well-distributed Zr-ACP. Cell penetration within the airbrushed scaffolds was found to be more than twice the cell penetration within conventional electrospun networks. The airbrushed polymer network supported cell growth and differentiation. Cells grown on the Zr-ACP in P-DL-LA fibers exhibited improved levels of osteocalcin protein with an increase in the Zr-ACP content by day 16. This airbrushing method promises to be a viable and attractive alternative to currently used electrospinning techniques in the formation of composite 3D nanofiber scaffolds for tissue engineering applications.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享