400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Predictive modeling of phenolic compound release from nanofibers of electrospun networks for application in periodontal disease
2019/11/27 21:35:30 admin
Buccal drug delivery faces hurdles due to a lack of therapeutic efficiency resulting from saliva wash out. To meet this challenge, impregnated nanofibers with pharmaceutical agents could shorten total release duration as a result of higher surface area. Moreover, the electrospinning technique successfully functions in the field of nanofiber fabrication. Hence, in this study, composite nonwoven mesh containing Ziziphus jujuba extract was prepared by electrospinning, and release profile was studied in artificial saliva. The polymers used included chitosan and polyethylene oxide (PEO), which provided the desirable hydrophilicity that is essential for mucoadhesivity. Furthermore, the phenolic compound extracted from a plant namely Z. jujuba was used due to its oral healing effect. Morphology and chemical state of the composite film were also investigated through scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively. Kinetic release of chitosan-PEO/phenolic compound nanofibers demonstrates a profile of Fickian diffusion dependency that delivered total phenolic ingredients in <75 min. The swelling behavior of composite type confirms Fickian diffusion and anomalous transport as a result of hydrophilic property of produced network and erosion mechanism on release phenomena, respectively. Results showed that impregnated electrospun patches of nanofibers can be promising for developing oral local drug delivery.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享