400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Effect of Gamma Irradiation-Induced Degradation of Alginate Nanofibers for Tissue Engineering
2019/11/27 21:34:38 admin
Alginate, a linear un-branched polysaccharide derived from seaweed has shown great potential as a cell scaffold for the regeneration of many tissues. However, alginate is not naturally enzymatically degraded in ionically crossliked alginate htdrogels exhibit a remarkably slow degradation rate, which is typically months to years for their complete removal from injection site. The ionizing irradiation degrades polysaccharides through the free radical-induced scission of glycosidic bonds of alginate. In this work, alginate/PEO nanofiber was irradiated Co-60 gamma-rays in the dose range of 50-300 kGy. This approach offers control over the degradation rate by varying the gamma-irradiation dose degree, as increasing the gamma-irradiation dose degree can increase the vulnerability of alginate nanofibers to hydrolysis under in vitro condition. And, the ability of electrospun a cell adhesive peptide Gly-Arg-Gly-AspS er-Pro (GRGDSP) modified alginate and unmodified alginate nanofibrous scaffolds to support human mesenchymal stem cell (hMSCs) attachment and spreading was greatly enhanced on the adhesion ligand-modified compared to unmodified nanofibers, demonstrating the initial promise of this electrospun polysaccharide material with defined nanoscale architecture and cell adhesive properties for tissue regeneration applications.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享