Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts
2019/11/27 21:34:33
admin
Improvement of catalytic efficiency of immobilized enzymes via materials engineering was demonstrated through the preparation of bioactive nanofibers. Bioactive polystyrene (PS) nanofibers with a typical diameter of 120 nm were prepared and examined for catalytic efficiency for biotransformations. The nanofibers were produced by electrospinning functionalized PS, followed by the chemical attachment of a model enzyme, alpha-chymotrypsin. The observed enzyme loading as determined by active site titration was up to 1.4% (wt/wt), corresponding to over 27.4% monolayer coverage of the external surface of nanofibers. The apparent hydrolytic activity of the nanofibrous enzyme in aqueous solutions was over 65% of that of the native enzyme, indicating a high catalytic efficiency as compared to other forms of immobilized enzymes. Furthermore, nanofibrous alpha-chymotrypsin exhibited a much-improved nonaqueous activity that was over 3 orders of magnitude higher than that of its native counterpart suspended in organic solvents including hexane and isooctane. It appeared that the covalent binding also improved the enzyme's stability against structural denaturation, such that the half-life of the nanofibrous enzyme in methanol was 18-fold longer than that of the native enzyme.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复