Copper Oxide-Carbon Nanofibers Grown as Composite Electrodes for a Carbon-MEMS Energy Storage System
2019/11/27 21:33:25
admin
Herein, we fabricated a carbon nanofiber electrode for an energy storage system by electrospinning the SU-8 precursor and subsequent pyrolysis. Copper (Cu) was electroplated and annealed at different temperatures to investigate the electrochemical characteristics of self-producing, full-type lithium ion cells. The surface integral of the cyclic voltammogram plot of the copper oxide-carbon nanofiber composite electrode annealed at 300 degrees C for 120 min is the largest among all of the conditions that we tested. The capacity of the energy storage system with a full lithium ion cell reached up to 13.3 mAh/g. When the electrode was oxidized at 300 degrees C for 120 min, the ratio of loss in the cycling performance was also lower than any of the other conditions, and this material also showed good cycling performance.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复