One-dimensional carbon-SnO2 and SnO2 nanostructures via single-spinneret electrospinning: tunable morphology and the underlying mechanism
2019/11/27 21:32:58
admin
Carbon-SnO2 hybrid nanofibers with tunable morphology were prepared from polyacrylonitrile (PAN) and tin compounds via single-spinneret electrospinning and subsequent carbonization. Different tin compounds, including tin acetate (Sn(CH3COO)(2)), tin chloride dihydrate (SnCl2 center dot 2H(2)O), tin sulfate (SnSO4) and tin sulfide (SnS), were chosen as precursors of SnO2 to tune the morphology of carbon-SnO2 nanofibers. Morphology of the obtained nanofibers was studied using a field emission scanning electron microscope (FESEM) and a transmission electron microscope (TEM), and their structures were characterized by thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). A carbon-SnO2 core-shell morphology is formed during carbonization when Sn(CH3COO)(2) and SnCl2 center dot 2H(2)O are used as precursors of SnO2, while uniform distribution of Sn compounds in a carbon matrix is observed with SnSO4 or SnS as the precursor. Our study demonstrates that the Kirkendall effect, which is responsible for the formation of the core-shell morphology during carbonization, is strongly dependent on melting points and decomposition behaviours of the precursors. SnO2 nanofibers and nanotubes with a high aspect ratio were produced upon burning out carbon, and their morphology is dependent on that of the corresponding hybrid nanofibers. TEM studies show that the SnO2 nanofibers/nanotubes are constituted of SnO2 single crystals, yet the grain size and facet varies with the precursor. The Brunauer-Emmett-Teller (BET) study verifies that the nanofibers/nanotubes have a large surface area, which also varies with the precursors used.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复