400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries
2019/11/27 21:32:28 admin
Nanofiber-coated composite membranes were prepared by electrospinning polyvinylidene fluoride-co-chlorotrifluoroethylene (PVDF-co-CTFE) and PVDF-co-CTFE/polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP) onto six different Celgard (R) microporous battery separator membranes. Application of a PVDF-based copolymer nanofiber coating onto the surface of the battery separator membrane provides a method for improving the electrolyte absorption of the separator and the separator-electrode adhesion. Peel tests showed that both PVDF-co-CTFE and PVDF-co-CTFE/PVDF-co-HFP nanofiber coatings have comparable adhesion to the membrane substrates. Electrolyte uptake capacity was investigated by soaking the nanofiber-coated membranes in a liquid electrolyte solution. PVDF-co-CTFE and PVDF-co-CTFE/PVDF-co-HFP nanofiber-coated membranes exhibited higher electrolyte uptake capacities than uncoated membranes. It was also found that PVDF-co-CTFE nanofiber-coated membranes have higher electrolyte uptakes than PVDF-co-CTFE/PVDF-co-HFP nanofiber-coated membranes due to the smaller diameters of PVDF-co-CTFE nanofibers and higher polarity of PVDF-co-CTFE. The separatorelectrode adhesion properties were also investigated. Results showed PVDF-co-CTFE and PVDF-co-CTFE/PVDF-co-HFP nanofiber coatings improved the adhesion of all six membrane substrates to the electrode. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享