Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications
2019/11/27 21:31:51
admin
The development of wearable electronic devices in recent decades has brought new opportunities in the exploration of micro-supercapacitors as energy storage units. In this work, we report the fabrication of flexible NiFe2O4 nanofiber based in-plane micro-supercapacitors (MSCs), which can serve as energy storage receptors to drive a portable graphene pressure sensor. The obtained NiFe2O4 nanofiber electrodes exhibited a specific capacitance of 2.23 F cm(-3) at the scan rate of 100 mV s(-1), and excellent rate capability and robust cycling stability with a capacitance retention of 93.6% after 10 000 charge/discharge cycles. Moreover, the in-plane MSCs have superior flexibility and outstanding stability even after repetition of charge/discharge cycles during the convex and concave bending states. The MSCs offered a high energy density of 0.197 mWh cm(-3) and power density up to 2.07 W cm(-3). We also coupled the MSCs with a graphene pressure sensor as a micro-integrated system to implement it's pressure response function and used MATLAB to simulate this system behavior as well. The performance of the designed systems exhibited a stable pressure response, and the simulated results coincide well with the experimental data, demonstrating its feasibility in wearable electronic devices.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复