400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning
2019/11/27 21:30:56 admin
Pure and Co-doped (0.3 wt%, 0.5 wt%, and 1 wt%) ZnO nanofibers are synthesized by an electrospinning method and followed by calcination. The as-synthesized nanofibers are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) spectroscopy. Comparing with pure ZnO nanofibers, Co-doped nanofibers exhibit improved acetone sensing properties at 360 degrees C. The response of 0.5 wt% Co-doped ZnO nanofibers to 100 ppm acetone is about 16, which is 3.5 times larger than that of pure nanofibers (about 4.4). The response and recovery times of 0.5 wt% Co-doped ZnO nanofibers to 100 ppm acetone are about 6 and 4s, respectively. Moreover, Co-doped ZnO nanofibers can successfully distinguish acetone and ethanol/methanol, even in a complicated ambience. The high response and quick response/recovery are based on the one-dimensional nanostructure of ZnO nanofibers combining with the Co-doping effect. The selectivity is explained by the different optimized operating temperatures of Co-doped ZnO nanofibers to different gases. (C) 2011 Elsevier B.V. All rights reserved.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享