400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Effects of Ce doping and humidity on UV sensing properties of electrospun ZnO nanofibers
2019/11/27 21:30:39 admin
Pure ZnO and Ce-doped ZnO nanofibers were synthesized via electrospinning-calcination technique. The morphology, composition, structure, humidity sensing and photoelectric properties were characterized. The field-effect curves showed that a single pure ZnO nanofiber is an n-type semiconductor and an individual Ce-ZnO nanofiber is a p-type semiconductor. The Ce doping and humidity have strong influence on the UV sensing properties of ZnO-based nanofibers. In the dark, the responses [( I-Various (RH) - I-43% (RH))/I-43% (RH)] of pure ZnO increased gradually with the increase of humidity, while the responses of Ce-doped ZnO nanofibers decreased. When exposed to UV radiation, the response of pure ZnO nanofibers decreased with increasing humidity, while that of Ce-doped ZnO increased. And the highest responses are around 88.44 and 683.67 at 97% humidity for pure ZnO and Ce-ZnO nanofibers under UV irradiation. In addition, the UV response of Ce-ZnO with good stability and repeatability increases by two orders of magnitude than that of pure ZnO. The sensing mechanism relevant to oxygen and water-related conduction was discussed briefly. These results exhibit that the application prospects of p-type Ce-ZnO nanofibers are promising in the field of photoelectric devices. Published by AIP Publishing.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享