400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Photochemical Deposition of Highly Dispersed Pt Nanoparticles on Porous CeO2 Nanofibers for the Water-Gas Shift Reaction
2019/11/27 21:30:23 admin
Ceria (CeO2) nanofibers with high porosity are fabricated using an approach involving sol-gel, electrospinning, and calcination. Specifically, cerium(III) acetylacetonate and polyacrylonitrile (PAN) are dissolved in N,N-dimethylformamide (DMF) and then electrospun into nanofibers. The PAN matrix plays a critical role in stabilizing the porous structure from collapse during calcination in air up to 800 degrees C. CeO2 porous nanofibers comprising an interconnected network of single crystalline and fully oxidized CeO2 nanoparticles about 40 nm in size are obtained. The hierarchically porous structure of the CeO2 nanofibers enables the facile deposition of Pt nanoparticles via heterogeneous nucleation in a photochemical method. When conducted in the presence of poly(vinyl pyrrolidone) (PVP) and 4-benzyolbenzoic acid, uniform Pt nanoparticles with an average diameter of 1.7 nm are obtained, which are evenly dispersed across the entire surface of each CeO2 nanofiber. The high porosity of CeO2 nanofibers and the uniform distribution of Pt nanoparticles greatly improve the activity and stability of this catalytic system toward the water-gas shift reaction. It is believed that this method could be extended to produce a variety of catalysts and systems sought for various industrial applications.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享