400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes
2019/11/27 21:28:27 admin
Carbon coating and carbon nanofiber processes were used to enhance the cycling performance of SnSb alloys. Carbon-coated SnSb alloys were firstly prepared by a simple hydrothermal method to build the first protection, and then carbon-coated SnSb nanoparticles were embedded in carbon nanofibers via single-spinneret electrospinning followed by carbonization. The crystal structure of carbon-coated SnSb/C hybrid nanofibers was characterized by X-ray diffraction (XRD). The morphologies of carbon-coated SnSb alloys and hybrid nanofibers were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The thermal stability of hybrid nanofibers were determined by thermogravimetric analysis (TGA). The electrochemical properties were investigated as a potential high-capacity anode material for lithium-ion batteries. The results showed that the hybrid nanofibers exhibited excellent electrochemical performance due to the special structure. The carbon shell can effectively hinder the agglomeration of SnSb alloys, while maintaining electronic conduction as well as accommodating drastic volume changes during lithium insertion and extraction and carbon nanofibers formed a further protection. The resultant carbon-coated SnSb nanoparticles dispersed in carbon nanofibers deliver a high capacity of 674 mA h g (1) and a good capacity retention of 68.7% after 50 cycles. (C) 2014 Elsevier B.V. All rights reserved.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享