Mn2O3/TiO2 nanofibers with broad-spectrum antibiotics effect and photocatalytic activity for preliminary stage of water desalination
2019/11/27 21:27:58
admin
Composite nanofibers consisting of Mn2O3 and TiO2 were prepared by the electrospinning process, and tested as Gram-class-independent antibacterial agent and photocatalyst for organic pollutants degradation. Initially, electrospinning of a sol gel consisting of titanium isopropoxide, manganese acetate tetrahydrate and poly(vinyl pyrrolidone) was used to produce hybrid polymeric nanofibers. Calcination of the obtained nanofibers in air at 650 degrees C led to produce good morphology Mn2O3/TiO2 nanofibers. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the as-spun nanofibers and the calcined product. X-ray powder diffractometry (XRD) analysis was also used to characterize the chemical composition and the crystallographic structure of the sintered nanofibers. The antibacterial activity of Mn2O3/TiO2 nanofibers against Gram negative and Gram positive bacteria was investigated by calculating the minimum inhibitory concentration after treatment with the nanofibers. Investigations revealed that the lowest concentration of Mn2O3/TiO2 nanofibers solution inhibiting the growth of Staphylococcus aureus ATCC 29231 and Escherichia colt ATCC 52922 strains is 0.4 and 0.8 mu g/ml, respectively. Incorporation of Mn2O3 significantly improved the photodegradation of methylene blue (MB) dye under the visible light irradiation due to enhancing rutile phase formation in the TiO2 nanofibers matrix. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复