400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery
2019/11/27 21:27:09 admin
Cellulose derivative CMCAB was synthesized, and nanometer fiber composite material was obtained from lithium iron phosphate (LiFePO4, LFP)/CMCAB by electrospinning. Under the protection of inert gas, modified LFP/carbon nanofibers (CNF) nanometer material was obtained by carbonization in 600 degrees C. IR, TG-DSC, SEM and EDS were performed to characterize their morphologies and structures. LFP/CNF composite materials were assembled into lithium-ion battery and tested their performance. Specific capacity was increased from 147.6 mAh g(-1) before modification to 160.8 mAh g(-1) after modification for the first discharge at the rate of 2 C. After 200 charge-discharge cycles, when discharge rate was increased from 2C to 5C to 10 C, modified battery capacity was reduced from 152.4 mAh g(-1) to 127.9 mAh g(-1) to 106 mAh g(-1). When the ratio was reduced from 10 C to 5 C to 2 C, battery capacity can be quickly approximate to the original level. Cellulose materials that were applied to lithium battery can improve battery performance by electrospinning. (C) 2013 Published by Elsevier Ltd.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享