400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Three-dimensional multilayered fibrous constructs for wound healing applications
2019/11/27 21:26:52 admin
Electrospun materials are promising scaffolds due to their light-weight, high surface-area and low-cost fabrication, however, such scaffolds are commonly obtained as ultrathin two-dimensional non-woven meshes, lacking on topographical specificity and surface side-dependent properties. Herein, it is reported the production of three-dimensional fibrous materials with an asymmetrical inner structure and engineered surfaces. The manufactured constructs evidence fibrous-based microsized conical protrusions [length: (10 +/- 3) x 10(2) mu m; width: (3.8 +/- 0.8) x 10(2) mu m] at their top side, with a median peak density of 73 peaks per cm(2), while their bottom side resembles to a non-woven mesh commonly observed in the fabrication of two-dimensional electrospun materials. Regarding their thickness (3.7 +/- 0.1 mm) and asymmetric fibrous inner architecture, such materials avoid external liquid absorption while promoting internal liquid uptake. Nevertheless, such constructs also observed the high porosity (89.9%) and surface area (1.44 m(2) g(-1)) characteristic of traditional electrospun mats. Spray layer-by-layer assembly is used to effectively coat the structurally complex materials, allowing to complementary tailor features such as water vapor transmission, swelling ratio and bioactive agent release. Tested as wound dressings, the novel constructs are capable of withstanding (11.0 +/- 0.3) x 10(4) kg m(-2) even after 14 days of hydration, while actively promote wound healing (90 +/- 0.5% of wound closure within 48 hours) although avoiding cell adhesion on the dressings for a painless removal.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享