Concurrent and Sustained Delivery of FGF2 and FGF9 from Electrospun Poly(ester amide) Fibrous Mats for Therapeutic Angiogenesis
2019/11/27 21:26:27
admin
Therapeutic angiogenesis has emerged as a potential strategy to treat ischemic vascular diseases. However, systemic or local administration of growth factors is usually inefficient for maintaining the effective concentration at the site of interest due to their rapid clearance or degradation. In this study, we report a differential and sustained release of an angiogenic factor, fibroblast growth factor-2 (FGF2), and an arteriogenic factor, fibroblast growth factor-9 (FGF9), from alpha-amino acid-derived biodegradable poly(ester amide) (PEA) fibers toward targeting neovessel formation and maturation. FGF2 and FGF9 were dual loaded using a mixed blend and emulsion electrospinning technique and exhibited differential and sustained release from PEA fibers over 28 days with preserved bioactivity. In vitro angiogenesis assays showed enhanced endothelial cell (EC) tube formation and directed migration of smooth muscle cells (SMCs) to platelet-derived growth factor (PDGF)-BB and stabilized EC/SMC tube formation. FGF2/FGF9-loaded PEA fibers did not induce inflammatory responses in vitro using human monocytes or in vivo after their subcutaneous implantation into mice. Histological examination showed that FGF2/FGF9-loaded fibers induced cell niche recruitment around the site of implantation. Furthermore, controlled in vivo delivery of FGF9 to mouse tibialis anterior (TA) muscle resulted in a dose-dependent expansion of mesenchymal progenitor-like cell layers and extracellular matrix deposition. Our data suggest that the release of FGF2 and FGF9 from PEA fibers offers an efficient differential and sustained growth factor delivery strategy with relevance to therapeutic angiogenesis.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复