400-8910-119
首页 > 文献资料 > ES-Bank > 详情
In-Situ Growth of CoS Nanoparticles Onto Electrospun Graphitized Carbon Nanofibers as an Efficient Counter Electrode for Dye-Sensitized Solar Cells
2019/11/27 21:26:16 admin
One-dimensional graphitized carbon nanofibers (G-CNFs) were prepared by employing facile electrospinning technique using 10 wt% of polyacrylonitrile (PAN) solution in N, N-dimethyl formamide (DMF) as precursor followed by successive stabilization, carbonization and purification processes. Cobalt sulfide (CoS) nanoparticles were grown onto G-CNFs by hydrothermal method using cobalt chloride and L-cysteine as precursors. The results of X-ray diffraction (XRD) and Raman spectroscopy confirmed the phase formation and degree of graphitization, respectively. Field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images confirmed the morphology, growth and distribution of CoS nanoparticles over G-CNFs (CoS/G-CNFs). The electrochemical studies such as cyclic voltammetry (CV), electrochemical impedance and Tafel polarization revealed that CoS/G-CNFs have lower overpotential, low charge transfer resistance and higher exchange current density for triiodide (I-3(-)) reduction reaction. The superior electrocatalytic activity of CoS/G-CNFs than std. Pt is due to combined contribution of interconnected pore structure with high surface area of G-CNFs and excellent electrocatalytic activity of CoS. In addition, the dye sensitized solar cell (DSSC) based on platinum-free CoS/G-CNFs has exhibited higher photo-conversion efficiency (PCE) under a simulated solar light irradiation of 100 mW cm(-2) when compared to standard platinum (std. Pt) which is attributed to the synergistic effect of CoS with G-CNFs.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享