Fabrication and characterization of SrAl2O4: Eu2+Dy3+/CS-PCL electrospun nanocomposite scaffold for retinal tissue regeneration
2019/11/27 21:26:00
admin
Millions of people around the world become blind due to losing a part of the retina cells. In tissue engineering field one way to address this issue is to develop a retina tissue by scaffolds based on structure and signals received These scaffolds can play an essential role in repair and reformation of the damaged retina tissue. Here, SrAl2O4: Eu2+, Dy3+ nanophosphor were prepared by sol-gel method and then coated with PEG to become biocompatible. Next 10%, 30% and 50% concentration of the coated nanophosphors were dispersed in CS-PCL copolymer and electrospuned to form SrAl2O4: Eu2+, Dy3+/CS-PCL scaffolds. The aforementioned photo -luminescence-scaffolds were studied for their optical, mechanical and morphological characteristics finally the effect of these scaffolds on the mice RPCs cells' proliferation and differentiation was observed. The 30% nanophosphor dispersion scaffold while providing adequate mechanical flexibility and integrity, and exhibiting superior proliferation rates and acceptable differentiation into retinal neural cells (particularly photo receptors retinal) is suggested as a promising choice in retinal tissue repair. (C) 2016 Elsevier B.V. All rights reserved.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复