400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Coaxially Electrospun Scaffolds Based on Hydroxyl-Functionalized Poly(epsilon-caprolactone) and Loaded with VEGF for Tissue Engineering Applications
2019/11/27 21:25:58 admin
The aim of this study was to fabricate nanofibrous scaffolds based on blends of a hydroxyl functionalized, polyester (poly(hydroxymethylglycolide-co-epsilon-caprolactime), pHMGCL) and Poly(epsilon-Caproladone) (PCL), loaded with bovine serum albumin (BSA) as a protein stabilizer and vascular endothelial growth factor (VEGF) as a potent angiogenic factor, by means of a coaxial electrospinning technique. The scaffolds were characterized by scanning electron microscopy (SEM) fluorescence microscopy (FM), and differential scanning calorimetry. (DSC). The scaffolds displayed, a Uniform fibrolis. structure with a fiber diameter around 700 nm. The release of BSA from the core Of the fiber was studied by high performance liquid chromatography (HPLC), and it was shown that the coaxial Scaffolds composed of, blends of pHMGCL and PCL, exhibited faster, release than the comparative PCL scaffolds. VEGP was also incorporated in the core of the scaffolds, and the effect Of the released protein on the attachment and proliferation of endothelial cells Was investigated. It was shown that the incorporated protein preserved its biological activity and resulted in initial higher numbers of adhered cells.. Thus, these bioactive scaffolds based on blends of pHMGCL/PCL loaded with VEGF can be considered is a promising candidate for tissue engineering applications.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享