400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries
2019/11/27 21:25:40 admin
Metallic Sn is a promising high-capacity anode material for use in lithium-ion batteries (LIBs), but its huge volume variation during lithium ion insertion/extraction typically results in poor cycling stability. To address this, we demonstrate the fabrication of Sn nanoparticle-loaded porous carbon nanofiber (Sn-PCNF) composites via the electrospinning of Sn(II) acetate/mineral oil/polyacrylonitrile precursors in N,N-dimethylformamide solvent and their subsequent carbonization at 700 degrees C under an argon atmosphere. This is shown to result in an even distribution of pores on the surface of the nanofibers, allowing the Sn-PCNF composite to be used directly as an anode in lithium-ion batteries without the need to add non-active materials such as polymer binders or electrical conductors. With a discharge capacity of around 774 mA h g(-1) achieved at a high current of 0.8 A g(-1) over 200 cycles, this material clearly has a high rate capability and excellent cyclic stability, and thanks to its unique structure and properties, is an excellent candidate for use as an anode material in high-current rechargeable lithium-ion batteries. (C) 2014 Elsevier B.V. All rights reserved.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享