400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation
2019/11/27 21:25:29 admin
A monolayer of endothelial cells (ECs) aligned along the direction of blood flow plays crucial roles in the regulation of anti-thrombogenic and pro-inflammatory reactions in the blood vessel wall. Thus, many researchers have attempted to mimic the aligned structure of ECs in vascular grafts or tissue-engineered blood vessels. In the present study, we fabricated micro-groove patterned nanofibers using a femtosecond laser ablation technique to recapitulate the densely organized anisotropic architecture of the endothelial layer. Femtosecond laser ablation enabled us to generate high-resolution groove patterns (10 mm width) with 20 or 80 mm gaps on randomly oriented electrospun nanofibers. The patterned nanofibers exhibited anisotropic (transverse: 101.1 +/- 4.0 degrees and longitudinal: 123.5 +/- 9.4 degrees) water contact angles; however, the mechanical properties were consistent in both directions. The micropatterned nanofibers modulated the aligned structure or aspect ratio (20 mm: 0.23 +/- 0.11 and 80 mm: 0.42 +/- 0.18) of ECs along the pattern direction. In particular, the engineered aligned endothelial layer was effective in eliciting an anti-inflammatory response (approximately 50% greater than that of random or aligned nanofibers), thereby effectively preventing monocyte adhesion following activation by TNF-alpha treatment. Therefore, micropatterning by laser ablation can be utilized to generate high-resolution microgrooves on various substrates, thereby providing fundamental platforms for vascular tissue engineering.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享