Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile
2019/11/27 21:24:57
admin
Toward the objective of developing platform technologies for anti-infective materials based upon photodynamic inactivation, we employed electrospinning to prepare a non-woven textile comprised of polyacrylonitrile nanofibers embedded with a porphyrin-based cationic photosensitizer; termed PAN-Por((+)). Photosensitizer loading was determined to be 34.8 nmol/mg material; with thermostability to 300 degrees C. Antibacterial efficacy was evaluated against four bacteria belonging to the ESKAPE family of pathogens (Staphylococcus aureus; vancomycin-resistant Enterococcus faecium; Acinetobacter baumannii; and Klebsiella pneumonia), as well as Escherichia coli. Our results demonstrated broad photodynamic inactivation of all bacterial strains studied upon illumination (30 min; 65 +/- 5 mW/cm(2); 400-700 nm) by a minimum of 99.9996+% (5.8 log units) regardless of taxonomic classification. PAN-Por((+)) also inactivated human adenovirus-5 (similar to 99.8% reduction in PFU/mL) and vesicular stomatitis virus (>7 log units reduction in PFU/mL). When compared to cellulose-based materials employing this same photosensitizer; the higher levels of photodynamic inactivation achieved here with PAN-Por((+)) are likely due to the combined effects of higher photosensitizer loading and a greater surface area imparted by the use of nanofibers. These results demonstrate the potential of photosensitizer-embedded polyacrylonitrile nanofibers to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复