400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Fabrication, Characterization and In Vitro Evaluation of Aligned PLGA-PCL Nanofibers for Neural Regeneration
2019/11/27 21:24:49 admin
Electrospun nanofibrous scaffolds have received a great deal of attention in tissue engineering in recent years. Bridging larger nerve gaps between proximal and distal ends requires exogenous tubular constructs with uniaxially aligned topographical cues to promote the axonal re-growth due to the lack of fibrin cable formation. In this study, we have designed and developed a collector to obtain aligned nanofibers of PLGA-PCL. The average diameter of the fibers obtained is 230 +/- A 63 nm and the alignment of fibers is quantified by calculating relative angle of each fiber. The tensile strength, porosity, contact angle, and biodegradation of the uniaxial PLGA-PCL nanofibers are measured and compared with the corresponding random fibers. Pore size, Young's modulus, and degradation of the aligned scaffold are significantly lesser than random fibers (p < 0.05). The in vitro cell adhesion and proliferation of Schwann cells on the aligned nanofibers are evaluated and compared with random nanofibers. Our results demonstrate that the alignment of nanofibers has a significant influence on the adhesion and proliferation of Schwann cells. Thus, the axially aligned nanofibers may mimic the fibrin cable architecture; thereby it may represent an ideal scaffold for extending the growth of axonal processes.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享