400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Electrospinning and cutting of ultrafine bioerodible poly(lactide-co-ethylene oxide) tri- and multiblock copolymer fibers for inhalation applications
2019/11/27 21:24:14 admin
Triblock copolymers made up of poly(ethylene oxide) (PEO) and polylactide (PLA) were synthesized and converted to fibers by the electrospinning process. A two-step in situ-synthesis in bulk was applied to extend PLA-PEO-PLA triblock copolymers with relatively short block length and low molecular weight in order to obtain electrospinnable materials. DL-lactide was polymerized to the hydroxyl chain ends of PEO via the stannous octoate route. Hexamethylene diisocyanate (HDI) was added as chain extender in the second step, leading to poly(ether-ester-urethane) multiblock copolymers. The materials were electrospun from solutions in chloroform. Different concentrations and voltages were analyzed. The ether and ester blocks were varied in their block length and their effects on the fiber morphology was studied. Variations in the electrical conductivity of the chloroform solutions were investigated by adding triethyl benzyl ammonium chloride (TEBAC) in different amounts. Finally, with high quality electrospun PLA-PEO-PEO triblock copolymer fibers mechanical cutting was possible. Copyright (C) 2009 John Wiley & Sons, Ltd.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享