Design of antibacterial biointerfaces by surface modification of poly (epsilon-caprolactone) with fusion protein containing hydrophobin and PA-1
2019/11/27 21:22:50
admin
Class IIa bacteriocin pediocin PA-1 has broad-spectrum activity and is a well-characterized candidate food biopreservative. Here, a simple approach is designed to extend the application of pediocin PA-1 in improving the antibacterial activity of electrospun poly(caprolactone) (PCL) grafts through combining PA-1 with HGFI, which is a self-assembled protein with characteristics allowing the modulation of surface properties of other materials originated from Grifola frondosa. Saccharomyces cerevisiae was used as the host for expression of fusion protein PA-1-linker-HGFI (pH) and his-tag purification was used to purify recombinant protein pH. An antibacterial activity assay showed the fusion protein pH retained the biological property of native PA-1. Water contact angle, X-ray photoelectron spectroscopy, immunofluorescence assay and atomic force microscopy indicated the surface properties of HGFI were greatly preserved by the fusion protein pH. Finally, antibacterial activity of pH-modified PCL substrate measurements implied the fusion protein significantly improved the bacterial-resistance of the PCL film through dressing the PCL fibers with the recombinant pH protein. This work presents a new perspective on the application of hydrophobin and pediocin PA-1 in antibacterial medical devices. (C) 2016 Published by Elsevier B.V.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复