400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Alignment of multiple glial cell populations in 3D nanofiber scaffolds: Toward the development of multicellular implantable scaffolds for repair of neural injury
2019/11/27 21:22:31 admin
Non-neuronal cells of the central nervous system (CNS), termed "neuroglia," play critical roles in neural regeneration; therefore, replacement of glial populations via implantable nanofabricated devices (providing a growth-permissive niche) is a promising strategy to enhance repair. Most constructs developed to date have lacked three-dimensionality, multiple glial populations and control over spatial orientations, limiting their ability to mimic in vivo neurocytoarchitecture. We describe a facile technique to incorporate multiple glial cell populations [astrocytes, oligodendrocyte precursor cells (OPCs) and oligodendrocytes] within a three-dimensional (3D) nanofabricated construct. Highly aligned nanofibers could induce elongation of astrocytes, while OPC survival, elongation and maturation required pre-aligned astrocytes. The potential to scale-up the numbers of constituent nanofiber layers is demonstrated with astrocytes. Such complex implantable constructs with multiple glial sub-populations in defined 3D orientations could represent an effective approach to reconstruct glial circuitry in neural injury sites. (C) 2014 Elsevier Inc. All rights reserved.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享