Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers
2019/11/27 21:22:15
admin
The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring L-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC: PEO = 9: 1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 degrees C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复