A three-dimensional multiporous fibrous scaffold fabricated with regenerated spider silk protein/poly(L-lactic acid) for tissue engineering
2019/11/27 21:20:47
admin
An axially aligned three-dimensional (3-D) fibrous scaffold was fabricated with regenerated spider silk protein (RSSP)/poly (L-lactic acid) (PLLA) through electrospinning and post treatment. The morphology, mechanical and degradation properties of the scaffold were controlled through the weight ratio of RSSP to PLLA, the thickness of the scaffold and the treatment time. The scaffold with a weight ratio of 2: 3 (RSSP: PLLA) had a nanoleaves-on-nanofibers hierarchical nanostructure; the length and thickness of the nanoleaves were about 400 and 30 nm, respectively. The holes of the scaffolds ranged from hundreds of nanometers to several microns. The scaffold showed an ideal mechanical property that it was stiff when dry, but became soft once hydrated in the culture medium. Its degradation rate was very slow in the first 2 months, and then accelerated in the following 2 months. The pH values of the degradation mediums of all the samples remained in the range of 7.40-7.12 during degradation for 6 months. It had good biocompatibility with PC 12 cells. The aligned hierarchical nanostructure could guide the directions of the axon extension. This scaffold has a potential application in Tissue Engineering and controlled release. This study provides a method to produce synthetic or natural biodegradable polymer scaffold with tailored morphology, mechanical, and degradation properties. (C) 2014 Wiley Periodicals, Inc.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复